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INTRODUCTION

This Rocketdyne study of Ultra-High Power Space Nuclear Power System Design and
Development (Task 1) is a NASA Lewis Research Center sponsored activity as part
of NASA Contract No. NAS3 25808. This task examines the design and identifies
technology development requirements for Liquid Metal Cooled Reactor Potassium
Rankine Power Systems for Electrical Propulsion at power levels of 10 and 200
MWe, and for power system lifetimes of two and ten years.

Considerable background on liquid metal cooled reactor potassium Rankine power
systems has been developed by Rocketdyne over the past several years as one of
DOE’s Phase I Multimegawatt Space Nuclear Power Supply program contractors.
Phase I has just been completed and Rocketdyne as a recent down-select winner,
-is continuing development of the liquid metal cooled reactor potassium Rankine
System in Phase II of DOE’s MMW program. Extensive use of system analysis codes
and design and development data developed during Phase I of the MMW program has
allowed the development of much more extensive and detailed design/development
information for the potassium Rankine power systems studied in this Ultra-High
Power Space Nuclear Power System Design and Development task than could normally
have been generated by the level of effort provided for this task.

The liquid metal cooled UN-W/25Re cermet fueled reactor selected as most
appropriate for MMW potassium cycle applications in the DOE MMW program was
employed in this study. The metallic matrix provides excellent thermal
conductivity and constrains fuel swelling, A peak burnup of 28% should be
achievable since the small UN fuel particles are only about 85% dense. The
reference 200 MWe reactor with a 10 year lifetime weighs about §9,000 Kg. It
has been suggested that an alternate reactor concept11, which uses liquid metal
cooled recirculating tungsten or molybdenum clad UC, fuel pellets could result
in a reactor mass of about 10,000 Kg. However, a definitive conceptual design
for such a reactor concept has not been developed and the compatibility and
burnup capability of the clad carbide fuel is too uncertain to consider for a
reference reactor mass. Although a reactor mass of 10000 Kg appears too
optimistic for a 200 MWe 10-year recirculating pellet fueled reactor,perhaps a
mass savings of 15000 to 20000 Kg over the reference approach might be possible
if such a design ever proved feasible. The potential system mass savings for
the 200 MWe two-year or 10 MWe systems would not be near as significant.

L Sercel and S. Krauthamer, "Multimegawatt Nuclear Electric Propulsion;
First Order System Design and Performance Evaluation" IAA Space Systems
Technology Conference, June 9~12, 1986, San Diego, CA

2 D, Buden and J. Angelo, “Space Reactors - Past, Present, and Future",
Proc. 18th IECEC, 1983, Orlando, FL
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1.0  SUMMARY

A potassium Rankine cycle Ultra-High Power Space Nuclear Power System
was designed for Electrical Propulsion applications of 10 MWe and 200
MWe and for mission lifetimes of two and ten years. A single lithium
cooled reactor/primary loop is coupled to three active power conversion
systems to develop the power. For two year missions a single redundant
backup Power Conversion System (PCS) is provided and for ten year
missions, two backup PCSs are provided to achieve the desired mission
reliability. Only rectification is employed for power conditioning to
produce the 10,000 vdc power required.

Table 1.0-1 summarizes the overall characteristics of the potassium
Rankine system. Figure 3.1-1 shows the system schematic and Figures
3.2-1 and 3.2-2 show the overall system configurations.

The potassium Rankine cycle exhibits high efficiency at high radiator
temperatures resulting in lightweight, low area systems. Table 1.0-2
summarizes the system performance characteristics. The ten—-year mission
masses are seen to be significantly heavier than the two-year missions
because of the increased reactor mass (more fuel), and because an extra
PCS is required to achieve the same reliability for the longer mission.

Table 1.0-3 shows potential weight savings that could reduce the overall
system mass. A slightly off-optimum mass design point was selected for
the 200 MWe systems to reduce radiator area/system length. A 6000 Kg
mass savings could be achieved by selecting the minimum weight point at
an increased area/length penalty of about 4%. A man-rated radiation
dose limit of 5 R/yr was employed in this study. A 900-1500 Kg shield
weight savings for the 10 MWe systems and a 5600-7500 Kg savings for the
200 MWe systems could be achieved if a dose limit of 30 R/yr (50% of the
total allowed to astronauts) were employed. A further weight savings
of up to 6500 to 80,000 Kg for 10 MWe and 200 MWe systems could be
achieved through additional advanced technology development in the areas
of advanced radiators, carbon-carbon components and ceramic turbine
materials.

Assessment of the technical risks was performed at the individual-
component level. The conclusion of the assessment was that research was
needed in three areas prior to the start of full-scale development. The
areas were: Cermet fuel performance, carbon-carbon composite coating,

manufacturing and joining, and long-term reliability of high temperature
electromagnetic pump materials.

On a “crash" program basis, the major technical feasibility issues can
be resolved and the system developed, qualified, and be ready for launch
in 9 to 11 years for a 10 MWe system and 11 to 13 years for a 200 MWe
system. For a more normally paced program, the corresponding times are
12 to 14 years and 15 to 17 years, respectively.

NASA/CR—2001-210767 3



The total costs from inception to launch (including the first-flight

system) are estimated at $2.3 billion for the 10 MWe system and $5.8
billion for the 200 MWe system.

Realization of the weight savings attributed to the advanced technology
areas mentioned above would require additional development time ranging
from 3-5 years for the carbon—-carbon components and ceramic turbine
materials to 5-7 years for the advanced radiators.

NASA/CR—2001-210767 4
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2.0 POWER SYSTEM REQUIREMENTS

The overall requirements for the Ultra-High Power Space Nuclear Power Systems
are listed in Table 2.0-1. Only a potassium Rankine power system is considered.
Both 10MWe and 200MWe power systems were developed. Mission lifetimes are 2
years and 10 years and the power output is 10,000 Vdc. The system is man-rated:
and a maximum of 5 rem/yr is allowed at the dose plane. The dose plane is at
100m for the 10MWe system and at 344m for the 200MWe system. The long dose plane
separation for the 200MWe system results from the long radiator lengths resulting
from a heat pipe length limit of 15m imposed for practical heat pipe designs.
A system reliability requirement of 0.95 was employed for the man-rated mission.

NASA/CR—2001-210767 9
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3.0 POWER SYSTEM DESIGN AND PERFORMANCE
3.1 Power System Characteristics/Performance
3.1.1 System Characteristics

The power system consists of a lithium cooled fast reactor employing
UN-W/25Re cermet fuel coupled to the K-Rankine power conversion system.
A peak reactor outlet temperature of 1550K and a peak turbine inlet
temperature of 1450K were selected based on refractory metal limits.

A study was conducted to evaluate the system penalties associated with
limiting the reactor outlet temperature to 1350 K (SP-100 technology)
rather than 1550 K. ‘In limiting the reactor outlet temperature to 1350
K, the need for heavy tantalum alloys in primary loop, boiler, and in
the hot leg piping of the secondary loop is greatly reduced. Lighter
weight niobium alloys are sufficient in most instances. Where tantalum
alloys are selected, the stress to produce 1% creep is approximately 6
times greater at 1350 K than at 1550 K. This allows for reduced
component and piping wall thicknesses resulting in a reduction in mass
for the primary loop and for the boiler/reheater. The lower temperature
potassium Rankine power conversion system (PCS) requires a reduced heat
rejection temperature in order to provide an optimum cycle efficiency.
Operating at a lower condenser temperature (925 K vs. 1025 K) results in
mass increases to the PCS and the heat rejection system. The low
temperature system gives a much higher volumetric flow rate through the
reheater, the low pressure stages of the turbine, and through the
condenser. This results in larger PCS components. The turbine mass
increases primarily due to the size of the low pressure stages of the
turbine. The alternator mass increases due to the lower RPM limit of
the larger turbine. Decreasing the condenser temperature significantly
increases the required heat rejection area. Overall, restricting the
reactor outlet temperature to 1350 K results in a 70% increase in
required heat rejection area. However, the mass of the system increases
less than 10%. The mass increases in the PCS’s and heat rejection
system are somewhat offset by mass reductions realized in the primary
system and boiler.

A study was also conducted to evaluate the benefit of a reactor outlet
temperature greater than 1550 K. Increasing the reactor temperature
beyond 1550 K results in higher primary system and boiler masses due to
the reduced strength of the tantalum alloys. Increasing the wall
thicknesses of tantalum components and piping greatly impacts the system
mass. The mass benefits realized from improved cycle performance
achieved with the higher temperature operation do not offset the mass
increases in materials, such as carbon/carbon composites with
compatibility coatings will need to be developed to replace the heavy

tantalum alloys. Based on these studies, the reactor outlet temperature
was limited to 1550 K.

Figure 3.1-1 shows the overall system schematic along with the state
points for the four systems. The system consists of three major
subsystems; the reactor/primary lithium loop, which extracts heat from
the reactor; parallel potassium power conversion loops that pick up heat

NASA/CR—2001-210767 11
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from the boiler producing potassium vapor which is converted to
electrical energy by a turboalternator; and power conditioning to
provide the specified power to the user bus. Auxiliary loops are
provided to cool lithium and potassium loop components as well as the
alternators.

For the two year mission, the system will consist of one primary loop
and 3+1 (3 operating and 1 redundant standby) power conversion loops.
From Table 3.1-1 it can be seen that 3+2 power conversion loops are
required to achieve similar PCS reliability for the 10-year mission.
The use of redundant backup (cool standby) loops was compared to an
alternate strategy in which all the loops are operated at partial power
until one fails. It was found that the use of standby rather than
operating loops produced higher overall system reliability, and reduced
the auxiliary heat rejection requirements (bearing cooling, etc.) thus
providing a lower mass system.

A reheat cycle is employed to limit moisture content in the turbine.

The system design points were optimized for minimum mass for the 10MWe
and 200MWe systems employing an optimization code developed by Rockwell
on DOE’s MMW Space Nuclear Power Supply program. The results of the
optimization are shown in Figure 3.1-2. From the graphs, it can be seen
that the 2 year mission optimizes at a condenser temperature of 1025K
while the 10 year mission condenser temperature optimizes at 1000K. The
1000K condenser temperature provides for a slightly more efficient cycle
reducing the reactor fuel mass for the larger reactor (fuel burnup
limited) required for long term operation. Because the radiator area
for the 200 MWe systems dictate the overall length of the system, a
slightly off-optimum design point with a weight penalty of 1-2% was
selected which allowed an area (and length) reduction of about 4%. This

weight savings could be implemented for a 12m longer configuration if
desired.

The reference process flows, temperatures, and pressures for the design
points are presented in Table 3.1-2. The reactor power requirements and
heat exchanger heat loads are listed in Table 3.1-3. The materials of
construction for the system are listed in Table 3.1-4. The major
components and piping are ASTAR 811C, T-111 and Nb-1Zr, and the
radiators are constructed of carbon-carbon composite to reduce weight.

NASA/CR—2001-210767 13
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3.1.2 System Performance, Mass and Area

Efficiency The system efficiencies obtained from the previous overall system
mass optimizations are as follows:

10 MWe 200 MWe
System Efficiency, ¥ 2 Yr 10 Yr 2 Yr 10 Yr
Power Generation 19.4 20.5 19.3 20.4
Power Conditioning 99 99 99 99
Overall System 19.2 20.3 19.1 20.2

Area Because of the high heat rejection temperatures, the main cycle waste heat
rejection radiator area needed for potassium Rankine cycles is quite small.
However, additional area is required for .primary and-PCS component cooling as
well as for power conditioning heat loads.

The overall area requirements for the different power systems are shown in Table
3.1.2-1. The effect of the lower main cycle radiator temperatures for the 10-
year missions result in slightly higher areas compared to the 2-year mission
areas. The auxiliary radiator area requirements are seen to be from 30 to 35%
of the total area requirement.

Mass The mass breakdowns for the four power systems are shown in Table 3.1.2-
2. For the 10 MWe systems, the radiation shield required is seen to be heavier
than the reactor. However, for the 200 MWe systems the larger boiler provides
additional radiation shielding, and the increased dose plane separation set by
the increased area required result in thinner radiation shields.

There are significant weight increases required in going from two-year to ten-
year system lifetimes. The reactor mass increases almost linearly with lifetime
since the fuel is burnup limited (25%). The need for the extra [(3-2) vs (3+1)]
PCS for the ten-year mission is reflected in the increased masses for the PCS,
boiler and auxiliary systems. The heat rejection weights are seen to increase
somewhat as well. This is because of the added radiator manifold required for

the extra PCS, and because of the increased meteroid protection armor required
for the longer mission.

The primary heat transport system is seen to be quite heavy. This mass is about
equally distributed among the EM pumps, piping and hoiler. Direct potassium
boiling reactor systems, which eliminate the primary loop, have been evaluated
in the past. These evaluations have always shown the mass for the direct boiling
system, with its larger reactor and shield, to be about the same or slightly
heavier than systems employing a primary loop and separate boiler. For the
primary loop system, the separate boiler provides much of the radiation shielding
required resulting in a much lower shield mass. To meet long term reliability
requirements it is necessary to provide redundant PCSs. For the direct boiling
reactor system this would require large PCS valves to isolate backup or failed
PCS systems and to activate backup systems. For these reasons and to avoid any

reactor boiling stability questions, the indirect system was selected for these
systems.
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The turboalternator is also quite heavy. The current allowable peak turbine
blade tip speed limits the rotational speed of the 200 MWe machine well below
that desired for a reasonable alternator mass.. This results in a much heavier
alternator than would result at higher speed. It may be better to decrease the
size of the turboalternators by going from three to four active units to allow

a higher rotational speed. This trade study has not been made at these power
levels.

As discussed in the next paragraph, development of several advanced technologies
could reduce the system masses presented by 6,500 to 80,000 Kg for the two power
levels. Additional savings are possible by increasing the allowable radiation
dose for the 10 MWe system and by increasing the length of the 200 MWe system
as was shown in Table 1.0-3 of the Summary.

NASA/CR—2001-210767 | 2



3.1.3 Advanced Technology Benefits Assessment

Advancements in a number of technology areas could benefit the nuclear
potassium Rankine power system. Those that could provide significant mass
savings to the reference design summarized in Table 3.1.3-1 and discussed
in the following paragraphs.

3.1.3.1 Advanced Radiators

A number of advanced radiator concepts have been proposed for application
to the problem of rejecting multi—-megawatts of waste heat to space. These
concepts are generally characterized as having significant mass advantages
over the heat pipe radiator concept. A recent assessment of these concepts
have been made by Shih, et.al.‘, of TRW, Reference 1. In that study the
heat’ pipe radiator, the membrane heat pipe radiator, the liquid droplet
radiator, the Curie point radiator, the rotating membrane radiator and belt
radiators were evaluated.

Results of the evaluation are summarized in Figure 3.1.3.1-1. The figure
indicates that the most advanced of the concepts could.provide a specific
panel mass of 0.02 Kg/KWt. The radiators used in this study result in
specific mass values of about 1.40 Kg/KWt of effective radiating surface
area. Use of the most advanced concept could, therefore, result in a mass
savings on the order of 40,000 Kg for the 200 MWe, 10 year life version.
It must be noted, however, that only very preliminary laboratory scale
demonstrations of these advanced concepts has been made.

' shih, C. C., Sollo, C., Boretz, J. E., Lissit, §. A., "Non-Nuclear
Multimegawatt Pulsed Power Systems/Lithium—~Hydrogen Chemical Reactor Study",
AFWAL-TR-88-2066, 30 September 88, AFWAL-WPAFB, Ohio
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3.1.3.2 Carbon-Carbon Composite Components and Piping

All metals, even refractory alloys, lose creep strength with increases in
operating temperature. Non-metallic compounds for high—temperature
structural applications have been investigated by government laboratories
and private industries through the last decade. Carbon—-bonded carbon fiber
materials have shown themselves to be the most promising of these new
materials for aerospace applications. Figure 3.1.3.2-1 illustrates the
strength to mass ratio for several more common metals and carbon-carbon

as a function of temperature. For temperatures .above 1000K, only
silica/silica has a comparable strength to mass ratio with that of carbon-
carbon.

Tests performed at Rocketdyne have shown that carbon-carbon requires a
compatibility coating when used with liquid metals such as lithium and
potassium at high operating temperatures. Research and development efforts
are underway at Rocketdyne in several aerospace programs, such as NASP,
MMW, SP-100 and Advanced Radiators, to develop compatibility coatings for
carbon-carbon composite structures for use in high-temperature liquid metal
environments. With a density of only 1.8 gm/cm3 carbon—-carbon composite
could be substituted for refractory alloys (T-111, ASTAR-811C and Nb-1Zr)
in the primary lithium loop piping and components, the boiler/reheater
structure, and the PCS potassium vapor and liquid piping and components.
System mass savings of 3000 Kg could be achieved in the 10 MWe system and
a savings of 20,000 Kg is possible in the 200 MWe system using this
emerging aerospace materials technology.

NASA/CR—2001-210767 26
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3.1.3.3 Ceramic Turbine Materials

Typical long life turbine geometry is limited by allowable tip speed (259
m/sec) to avoid turbine erosion. Tip speed increases can be achieved by
unique erosion resistant airfoil design. Rocketdyne has baselined 366
m/sec as an achievable, erosion free, limit based upon previous turbine
erosion studies.

Refractory alloys were selected for the turbine because of their high
strengths in high temperature potassium. Turbine mass, however, is driven
by the high density refractory alloy selection. Ceramic turbine components
have been successfully demonstrated by the airbreathing engine industry
and can potentially be utilized by the potassium Rankine cycle turbines
if compatibility and fatigue life can be demonstrated. The low density
of ceramics offer significant potential for turbine mass reductions.
Current studies indicate silicon nitride (SiyN,) may be a suitable turbine
material. Total system mass reductions of 1480 and 18800 Kg could be
achieved by using silicon nitride for turbine components.

NASA/CR—2001-210767 28



3.2 Power System Configuration

The overall configuration of the 10MWe and 200MWe systems are shown in Figures
3.2-1 and 3.2-2. The reactor/shield are located at the top. The dose plane was
taken as 100m for the 10MWe system and was set by the total radiator area
required, i.e., 344m for the 200MWe system. The equipment is arranged below the
reactor within a 17-1/2 degree angle on each side to prevent neutron scatter to
the payload. Flat plate heat pipe radiators are arranged below the PCS
equipment. Heat rejection radiators are provided for auxiliary loops, power
conditioning rectifier cooling and the alternator cooling loops above the main
cycle radiator. A realistic heat pipe length limit of 15m requires that three
condenser/heat pipe radiator modules in parallel be employed for the 200MWe
system to minimize the overall length within the shield angle. A lightweight
rectangular structure of tubular pipe construction provides support for the
equipment and an attachment to the payload and electrical propulsion system.
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3.3 Power System Design

The overall power system consists of the Reactor/Primary Loop System, the
Power Conversion System, Heat Rejection System and the Power Conditioning
System.

3.3.1 Reactor/Primary Loop Subsystem

This system includes the reactor and shield and the lithium primary heat
transport loop. ’

3.3.1.1 Reactor and Shield

The reactor is a lithium cooled fast reactor. Two fuel forms were
considered for the reactor; cylindrical UN fuel pellets sealed inside thin-
walled metal tubes similar to SP-100, and hexagonal cermet UN-W/25Re fuel
under development for the MMW program (ref. 1). The monolithic cermet fuel
form consisting of 100um UN particles in a matrix of W-25Re alloy was
selected.

The considerations that led to the selection of the cermet fuel form are
summarized in Table 3.3.1.1-1. These were subdivided according to those
related to safety and those related to performance. As may be seen, the
cermet fuel is a clear winner. It is superior to pin—type cores in almost
every category. Its high strength, and high thermal conductivity lead to
low gradients and good thermal shock resistance, and the solid block form
of the fuel element makes the core very resistant to core compaction type
accidents. Thus the cermet fuel provides an exceptionally safe core both
mechanically and neutronically.

It must be recognized that there is more experience with pin-type elements
and that this is the form chosen for SP-100. However the 1350K reactor
outlet temperature and operational requirements of SP-100 are much less
severe than those required for these systems and a new pin type fuel
element with a different cladding would have to be developed for the higher
1550K reactor outlet temperature required for these systems. The cermet
fuel element is clearly the proper selection for this higher temperature
application and the relative risk associated with its development versus
development of a higher temperature pin type element is minimal.

A typical reactor cross section is shown in Figure 3.3.1.1-1. The fuel
elements are hexagonal blocks with 0.564cm internal cylindrical coolant
flow channels lined with W—25Re. Some elements have a large central hole
to accommodate insertion of control or safety rods. The lithium coolant
flows upward through the core and fixed radial reflector into an upper
plenum. The outlet coolant is channeled from this plenum to the boiler
by twelve small pipes in grooves located around the perimeter of the
shield. The L/D of the active core is 1.11. The active core is surrounded
by a BeO reflector inside the reactor vessel. The peak fuel burnup is 25%
of the uranium in the fuel and the peak fuel temperature is 1820K.

Ref. 1. Battelle PNL, PNL 6744, Multimegawatt Fuels Development, FY 1988 Status
Report, May, 1989
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Table 3.3.1.1-1 Comparison of Cermet and Pin-Type Fuels

Consideration Favors: Reason

Safety

Water subcriticality Cermet Smaller coolant fraction,
Re spectral shift

Core compaction Cermet Higher strength, block fuel
form

Lattice expansion and flooding Cermet Not possible with cermets

Fuel element bowing Cermet More rigid elements

Loss of coolant accident Cermet Better heat conduction

Transient overpower events Cermet Lower fuel temperature

Fuel (cladding) failure Cermet Fission gas contained in
cermet matrix - No clad
to fail, no fission gas
plenum or venting required

Performance

Burnup potential Cermet Higher strength

Fuel temperature Cermet Lower AT in cermet fuel

Load following Cermet Faster ramp capability -
reduced fuel/clad
mechanical interaction

Reactivity feedback coefficients Cermet Faster thermal expansion

Fuel fraction Equal

Reactor size Cermet More compact due to higher
burnup——no gas plenum

Reactor mass Cermet More compact

Data base Pins More pins have Dbeen

irradiated (but at lower
temperature and burnup)
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At these large power levels and long mission lifetimes, it is no longer
possible to provide all the reactor control requirements with external
reflector control. A 10 MWe system reactor could only use reflector drum
control for a lifetime of one year or less. The 10 MWe reactor could
employ a sliding external reflector control system for lifetimes out to
about 2-3 years. For significantly higher power levels or longer
lifetimes, active in core control rods are required. Even though sliding
external reflector control could have been employed for the 10 MWe, two-
year application, all four systems developed in this study employ a fixed
internal reflector with all the control being provided by in-core active
control rods. There are seven in-core operational control and six in-core
reactor shutdown rods. The operational control rods must be cooled by the
lithium reactor coolant and, therefore, require vessel seal arrangements.
The shutdown rods do not require active cooling and therefore are simply
inserted into thimbles without the need for seals. The operational control
rods also serve as a backup reactor shutdown system.

The man-rated dose criteria used for radiation shielding is a § rem/year
contribution at the dose plane from the reactor. A minimum reactor/payload
separation distance of 100m was taken for the 10MWe system. A 344m
separation distance for the 200MWe system was set from radiator integration
considerations. A shadow shield with a shield cone half-angle of 17.5
degrees is used for all the systems. The shield is made up of alternate
layers of tungsten and Be,C with § volume percent B,C. Be,C is employed
rather than LiH because even though it results in a heavier shield, it is
a high temperature material which can reject its heat directly to space

without the need for an active cooling system. All primary and PCS
equipment is arranged within the 17.5 degree cone half-angle for both
cases.

The reactor/shield system masses are listed in Table 3.3.1.1-1. It can be
seen that the reactor weight is approximately proportional to lifetime due
to the 25% fuel burnup limit in each case. The estimated shield geometry
and thicknesses for the four systems is shown in Figure 3.3.1.1-2. The
boiler provides significant radiation shielding for the reactor. The 10
MWe systems have much smaller boilers to. aid in the shielding and,
therefore, require thicker shields. The 10 MWe systems employ two
alternating layers of tungston and Be,C/B,C, whereas the 200 MWe systems
only employ one of each. The increased shield weight for the ten-year 10
MWe mission is caused by the increased diameter of the larger 10-year
reactor. For the 200 MWe system the ten—-year shield mass is less than
the two-year shield. This is because the neutron and gamma ray axial
leakage from the ten—-year reactor is lower due to its larger size; in
addition, the boiler for the ten-year reactor is 20% larger than the boiler
for the two-year reactor (boiler designed for 5 PCS’s instead of 4).

The shielding provided by the boiler is extremely important, especially
for the 200 MWe systems. The mass of the boiler is in excess of 90,000 Kg.
It was estimated that if the boilers are not used as a shield, the shield
mass required will be approximately 47,400 Kg and 60,200 Kg for the two-
year and ten-year reactors, respectively. The shielding provided by PCS
equipment other than the boiler, e.g., turboalternators, pumps, etc., has
not been included in the analyses. By strategically locating these below
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the boiler, they could further reduce the dose rate by up to a factor of
5 (from 5 Rem/yr down to 1 Rem/yr).
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3.3.1.2 Primary Heat Transport

A pumped-lithium primary loop extracts thermal energy from the
reactor and transports it to the potassium boiler which serves as
the heat source for the power conversion cycle. The primary loop
schematic and requirements are shown in Figure 3.3.1.2-1. Two ac
electromagnetic (EM) induction pumps connected in series provide the
lithium loop hydraulic head. A decay heat removal jet pump assembly
provides a diverse and redundant method for reactor decay heat
removal to meet system safety requirements. A noncondensible gas
control assembly, located in the decay heat removal branch line,
removes any helium gas bubbles formed in the reactor from the lithium
side stream. A liquid metal expansion compensator accommodates
thermal expansion of the lithium in the primary system piping during
startup and thermal transient events and maintains system pressure.
The entire primary heat transport loop is electrical trace heated
to facilitate loop thaw—out during the initial system startup.

The primary lithium pump shown in Figure 3.3.1.2-2 is a four pole,
three phase ac annular linear induction pump. This design
incorporates electrical trace heaters to melt out the lithium in the
pump throat prior to pump startup. The auxiliary cooling subsystem
provides coolant flow to the EM pump stator and central torpedo

regions to limit the peak temperature of the magnetic materials to
less than 1100K.

The decay heat removal (DHR) requirements are listed in Table
3.3.1.2-1. The DHR function within the PHTS is diverse and redundant
to the primary heat transport circuit. A schematic showing these
functions is presented in Figure 3.3.1.2-3. The primary lithium
pumps are powered from redundant electrical buses supplied by battery
power. The DHR pump design must operate independent of this power
supply. An integral thermoelectric electromagnetic (TEM) dc
conduction pump design was selected to meet this requirement. To
reduce the volumetric flow rate through the DHR pump throat, the pump
is located on a small branch line of the main lithium line. The jet
pump is designed to couple the output flow of the DHR pump with the
main lithium line flow. During normal operations the jet pump
provides a net zero head. However, on loss of the main pumps, the
jet pumps provide sufficient main loop flow for decay heat removal.
Multiple TEM pumps are plumbed in parallel to meet the DHR flow
requirements.

Table 3.3.1.2-2 provides the mass breakdown for the primary heat
transport system.
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3.3.1.3 Auxiliary Cooling -~

Auxiliary Cooling Loops

The auxiliary cooling loops (ACL) provide cooling to various PHTS and PCS
components during normal operation. They also provide a redundant and
diverse pathway for reactor decay heat removal (DHR) following system
shutdown.

The ACL consists of self-regulated and self-powered pumped lithium heat
transport loops, one per PCS loop, plumbed in parallel for the PHTS
component cooling. Each of the ACL loops acts as a self-regulating thermal
bus that is independent of the system electrical power source. There are -
no moving parts and all of the components are based upon a proven
technology base (SNAP-10A).

The ACL provides a decay heat removal pathway in para]]e] with the main
heat transport pathway to the condenser as was shown in Figure 3.3.1.2-3.

The ACL provides 540 kWt of heat rejection capacity to the PHTS and reactor
components for the 10MWe system and 6200 KWt for the 200MWe system. The
ACL provides sufficient capacity to handle the entire DHR function for a
reactor trip. In the event of a reactor trip from full power operation,
decay heat is initially dumped to the boiler/condenser pathway in addition
to the ACL 1loops.

Table 3.3.1.3-1 shows the ACL thermal loads for the reactor, PHTS, and PCS
components. Three of the four (or five for 10-year missions) ACL Toops
are designed to provide the full cooling capacity required by the system.
The fourth (and fifth) ACL loops are provided for redundancy. The
auxiliary loops supply thermal conditioning to the standby backup PCS loop
components during normal operation. A single auxiliary cooling radiator
rejects the waste heat from all the auxiliary loops to space.

The mass breakdown for the ACL is provided in Table 3.3.1.3-2. The weight
provided includes 4 loops for the 2-year mission and 5 loops for the 10-
year mission.

Alternator Cooling Loops

Each operating alternator in the PCS requires cooling of its.stator and
rotor to remove waste heat and limit the temperature in these regions to
less than 530K. The amount of waste heat to be removed from each
alternator is the product of its rated output and inefficiency. The
requirements for the alternator cooling loops are listed in Table 3.3.1.3-
3. Pumped liquid-potassium coolant loops were selected based upon the
compatibility with the potassium working fluid used in the turboalternator-
bearing supply system. A schematic for this system is shown in Figure
3.3.1.3-1. Each alternator is designed with its own dedicated coolant loop
which is powered by a centrifugal pump located on the alternator shaft.
The transport piping from each alternator coolant loop is manifolded
together with the other alternator loops in the PCS and the heat is
rejected by a conmon heat pipe radiator.
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A mass breakdown for the alternator cooling loops is listed in Table
3.3.1.3-4 per power conversion system. The total system weight is also
presented for the two—- and ten—year missions.
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3.3.1.4 Boiler/Reheater

The boiler transfers heat from the reactor lithium coolant to the potassium
working fluid. In addition to providing superheated potassium to the
turbines, it is also employed to reheat to the moist vapor stream exiting
the high pressure stages of the turbine to provide a slightly superheated
stream entering the low pressure stages of the turbine. The helical tube
boiler is similar in concept to the Superphenix liquid metal steam
generator design. The helical tubes accommodate tube-to~tube and tube-
to~shell differential expansions. The helical design provides for a
compact, low mass heat exchanger.” The boiler/reheater configuration, along
with its heat transfer requirements and dimensions, is shown in Figure
3.3.1.4~1 for both the 10MWe and 200MWe systems. Although the boiler
configuration is shown as cylindrical in Figure 3.3.1.4-1, it will be
conically configured to provide maximum radiation shielding benefits. For
both power levels three active units are employed. Double walled tubes
are employed to prevent a single point failure to the primary system. An
extra set of tubes for a single nonactive backup PCS unit are provided
for the two-year mission and two sets are provided for the ten-year
mission. :

The boiler/reheater concept uses a common lithium shell side with all of
the potassium power conversion units on the tube side. This eliminates
the need for high temperature lithium bypass valves that would be required
if multiple boilers were provided. The hot lithium coolant leaving the
reactor core passes through boiler inlet manifold and into the shell side
of the boiler. The boiler shell side has an annular geometry, providing
for the lithium coolant return line to the reactor through the center of
the annulus. The lithium flow is one pass on the shell side with cross
flow baffles provided to ensure proper distribution of the lithium. The
boiler tube side provides for once through boiling and superheating of the
potassium. Boiling heat transfer in the boiler is enhanced by using
twisted tape inserts in the boiler tubes. This will provide for stable
boiling and minimize 1liquid droplet carry-over in a microgravity
environment.
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3.3.2 Power Conversion Subsystem
3.3.2.1 Turboalternator

Figure 3.3.2.1-1 shows the configuration of the turboalternator. The
overall turboalternator dimensions and mass are given in Table 3.3.2.1-1.
The turbine and alternator are treated sequentially in the following
sections.

Turbiner The turbine requirements for the 10 MWe and 200 MWe systems are
given in Tables 3.3.2.1-2 and 3.3.2.1-3. These reflect the lower optimum
condensing temperature and pressure for the 10-year missions. Figure
3.3.2.1-2 shows the turbine configuration, and the characteristics of the
turbine designs are presented in Tables 3.3.2.1-4 and 3.3.2.1-5. The
turbine employs eight reaction stages. The eight stages are divided into
four high-pressure and four low-pressure stages on the same shaft. Vapor
reheat is employed to maintain the minimum vapor quality limits within the
turbine. The turbine is designed for high reliability. It employs a
maximum tip speed of 366 m/s (1220 ft/s), a 90% minimum turbine vapor
quality and noncontacting seals and bearings. Stationary components are
constructed of T-111 and rotating components are constructed of ASTAR 1511~
C. The mass of only the turboalternator is also listed in the tables for
each system.

Alternator The alternators for the two power levels are of the same design
except for size, weight and rating. Table 3.3.2.1-6 presents the
requirements for the alternator and Table 3.3.2.1-7 lists the
configurational parameters. The alternator physical layout is shown in
Figure 3.3.2.1-3.

The alternator output frequency is a function of the rotational speed of
the machine and the number of magnetic poles designed into the machine.
Each of these is determined during the machine design based on the strength
of the rotor materials and the optimum magnetic design. The rotor speed
has primarily been determined by the turbine design to obtain optimum
overall performance between the turbine and alternator. Alternator output
frequency is expected to be 460 hertz for the 10 Mw design and 180 hertz
for the 200 Mw design, but will depend upon final alternator design.

The salient pole alternator provides the best combination of long life,
reliability and performance for applications at these power levels. The
integral exciter, salient pole machine provides reliable output voltage
control without slip rings or brushes and is lighter in weight than
homopolar induction type alternators. Salient pole machines, in this size
range, can also provide the high voltage required to eliminate the.need
for a step up transformer in the power conditioning system.

Trade studies of high temperature (675 K) versus medium temperature
alternator systems have indicated that the 425 to 455 K temperature range
allows the use of reliable high voltage insulation and results in a
lighter, more efficient alternator. These factors more than compensate

for the increased weight of the thermal management system required for this
temperature machine.
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3.3.2.2 Boiler Feed Turbopump (BFTP)

- The requirements for the potassium BFTPs for the 10 MWe and 200 MWe systems
are listed in Tables 3.3.2.2-1 and 3.3.2.2-2. The pump suction pressure
reflects the lower optimum condensing temperature and pressure for the 10-
year missions.

A representative cross section for the BFTP is shown in Figure 3.3.2.3-1.
The rotating shaft is supported by two radial tilting pad bearings and a
bidirectional acting, tilting pad thrust bearing that reacts the net shaft
axial loads induced by the turbine.

The boiler feed turbopump employs a one-stage centrifugal impeller with
an inducer to produce the required flow and pressure. Material for the
pump components is predominantly Nb-1Zr. A one-stage, partial-admission,
impulse turbine supplies the required pump power. The turbine stationary
components are predominantly T-111 and the rotating components are ASTAR
1511-C (due to higher stress requirements).

The characteristics of the turbine and pump are presented in Tables

3.3.2.2-3. and 3.3.2.2-4 for the 10 MWe and 200 MWe systems. These tables
also list the BFTP masses. .
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3.3.2.3 Rotary Fluid Management Device (RFMD)

Each power conversion unit in the system is designed with a rotary fluid
management device to provide positive, zero-g two-phase fluid management
for the potassium Rankine system. The RFMD supplies a small bleed flow
to the bearing supply system during PCS start-up. The requirements for
the RFMD are listed in Table 3.3.2.3-1, and Figure 3.3.2.3-1 shows the RFMD
configuration. Inventory management is provided via an accumulator
connected to a pitot pump, which maintains a fixed 1iquid level in the
drum. The cavitation-free capability of the pump minimizes the subcooling
required from the condensers. The RFMD pump provides sufficient inlet
pressurization to the turbopump to prevent cavitation during PCS steady-
state operation and transient conditions. The RFMD design characteristics,
and mass are summarized in Table 3.3.2.3-2. The 200 MWe system design
employs three RFMDs per PCS unit due to the multiple (3) parallel condenser
design used for the main cycle flat-plate radiator.

NASA/CR—2001-210767 71



08¢ 8¢l - (Yd) GvV3IH 13N

60§ | €L°L (S/9%) 3LV¥ MO14
€ T N)d/SLINN "ON
WILISAS MW 002 WILSAS =M 0T ININUINOTY *

1INN SJ3d d3id
SINIWIYINOIY NIIS3A GWAY

I-€°¢°¢€°¢ 114Vl

NASA/CR—2001-210767



£z

an4y
juswabeuew Alojuanuj sapinold e

dwndoqin}
0} peay palinbais sapiroid e

dwind aa1j uonejire) o
, Suojouny

J0)eInWNddY

Jasuapuo)

ﬂ_

| aAleA »
AV VLV .%\_ yels
A SIS | |
saqoud jolld _
Jo10M B.mEu:mo..m%w _
n_,/ [
% 1 <]
il
|
' :
ureig
bupeag
.m:ﬁ:oI\V
ojowIay
Aieuogjels dwndoqunj o}

chh<uH4mm< JTIA INDINVY WNISSYL0d

andy

1-€°2°€°¢ 34N91d

73

NASA/CR—2001-210767



050 °'€T
oev.cﬁ

009'€
¢9
0¢T
0/8
0°T
G°¢

WALSAS 3MH 007

G12'T 4YIA-NIL
L6 | - dv3IA-OML
9} ‘NOISSIW ¥3d SSYW GW4Y V10l

0S5 'T (Wd¥) @33dS

'S (AMY) INIWIYINOIY 9INIT00D

211 (3MN) YIMOd LNdNI

' ehe (9 SSVH LINN
A (W) ¥IL1IWYIA WNWIXYVH
0'1 (W) HI9NI1 WAWIXVHW
WILSAS 3MH 01  §3IIAvYvd

AYVHHNS NIIS3IA AW
2-€°2°¢°¢ 174Vl

74

NASA/CR—2001-210767



3.3.2.4 PCS Piping and Auxiliaries

The power conversion system (PCS) consists of four (and five) parallel
potassium Rankine power conversion loops. Three of the PCS loops are
required to provide full power output from the system. The fourth PCS loop
is provided in a nonoperating condition in the event of a PCS component
failure for the two year mission. A second standby PCS unit is included
for the 10 year mission. The requirements for the PCS loops are listed
in Table 3.3.2.4-1, and a Mass breakdown is given in Table 3.3.2.4-2.
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3.3.3 Heat Rejection Subsystem

The heat rejection subsystem is made up of the main cycle radiator as well
as radiators for auxiliary cooling loops, power conditioning rectifier
cooling and alternator cooling. The requirements for these radiators are
listed in. Tables 3.3.3-1 and 3.3.3-2. The operating requirements were
obtained from the overall weight optimization described in Section 3.1.1.
The optimum condensing temperature for the ten-year life power systems are
seen to be lower than the two-year life systems because the heavier
reactors associated with the longer fuel burnup result in a weight optimum
at a higher efficiency (lower condenser temperature).

The main cycle radiator is made up of heat pipes attached to the main
condenser. The condenser is a shear-controlled design with tapered
channels to maintain high vapor velocity along the condenser length,
sweeping the condensate to the outlet. Figure 3.3.3-1 shows how the four
or five condensers, depending on the redundancy required for 2 or 10 year
missions, are integrated with the heat rejection radiators. Each condenser
module is made up of dual tapered rectangular channels attached to the
evaporators of the heat pipe panels. The condensation process maintains
the radiator panels at near uniform temperature.

The radiator panels are composed of finned heat pipe assemblies. The
radiator fin and armor are fabricated from carbon—-carbon composite
material. For the potassium working fluid the heat pipe will employ a
metal coating. From operational considerations, the radiator heat pipe
length has been limited to 15 meters. This requires the use of three
condenser/heat pipe radiator panels in parallel to minimize overall system
length for the 200 MWe system as was seen in Figure 3.2-2.

There are three auxiliary radiators required to support the power
generation system. The auxiliary loop radiator is designed to reject the
heat collected by a lithium loop cooling used to cool some of the primary
loop and PCS components. The alternator cooling radiator functions
similarly with a NaK.loop used to cool the alternator. Both radiators use
finned carbon-carbon composite heat pipe panels for direct contact with
the outer shell of a duct to provide for the actual heat rejection. The
rectifier or power conditioning radiator provides a cold plate for mounting
of the electronics equipment. Heat is removed from the cold plate by way
of large diameter transport heat pipes which subsequently are cooled by

the radiator panels. Figure 3.3.3-2 shows the basic configuration of these
radiators.

The mass and area requirements for the main cycle and auxiliary radiators
are listed in Tables 3.3.3-3 and 3.3.3-4. The major differences in the
radiator masses for 2 and 10-year missions are the additional meteoroid

armor and the added redundant PCS (condenser or radiator heat exchanger)
for the 10-year radiators.
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Mass estimates are based on the radiator area required, the radiator
configuration, i.e., conical or flat plate, and the mass estimates
developed for the NASA sponsored, SP-100 Advanced Radiator Program. The
$P~100 Advanced Radiator Program reported a radiator specific mass,
exclusive of manifolds, piping, etc. of 4.73 Kg/(Sgq.-Meter) for a high
temperature space radiator operating at conditions similar to the main
radiator in this study. The SP—-100 advanced radiator operates at a high
fin efficiency due to the fact that the minimum mass of a conical radiator
coincides with a high fin efficiency. The minimum mass flat plate
radiators selected for these applications usually optimize at slightly
lower fin efficiency values, and consequently have lower specific masses,
since the lightweight fin now occupies a greater percentage of the surface.
The temperature of the radiator also influences the optimum mass operating
point. Lower temperature radiators usually optimize at- still lower fin
efficiencies. The optimized radiator parameters that resulted from these
designs for electrical propulsion are compared to the SP-100 advanced
radiator in Table 3.3.3-5, below.

TABLE 3.3.3-5
Ultra-High Power Space Nuclear Power
Radiator Design Parameter Comparison
(10-Year Mission)

—

Radiator Avg. Temp. Fin Spacing Fin Eff. Specific Mass
K (Cm.) (Kg/sq-Meter)

Advanced 800 2.28 0.9 4.73

SP-100/TE

Main Cycle 1000 4.83 0.8 3.42

Heat Rejection

Rectifier 398 7.62 0.7 2.44

Cooling

Alternator 436 7.62 0.7 2.44

Cooling

Auxiliary 650 6.35 ~0.75 2.78

Cooling Loop

Note that the specific mass values given in Table 3.3.3-5 do not include
the manifolds (condensers) and refer to the specific mass of a panel with
a planform area. For a flat plate radiator, the effective radiating area
is twice the planform area. A surface emissivity of 0.8 was employed
throughout to determine area requirements. Each radiator is oversized by
11.0% to provide for redundant heat pipes and working area. The radiators
for the two—year mission are approximately 79% of the mass of the ten—year
radiators due to reduced heat pipe armoring requirements.

3 NASA Contractor Report 182174, "Advanced Radiator Concepts for SP-100
Space Power Systems - Phase II Final Report", Rockwell International
Rocketdyne Division, Contract NAS3-25209, October 1988
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The balance of the heat rejection system masses were estimated from results
obtained for previous high power liquid metal Rankine cycle system designs

and from previous SP-100 studies conducted at Rocketdyne over the last
several years.
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3.3.4 Power Conditioning Subsystem

The power conditioning system is based on a regulation and rectification
stage connected to the output of the alternator. The power conditioning
requirements are listed in Table 3.3.4-1. The alternators provide
sufficient voltage that the required direct current voltage can be achieved
without step up transformers. Power conditioning trade studies have shown
that the increase in efficiency and reliability achieved by a lower
temperature system more than compensates for the mass of the required
thermal management system. Higher temperature power conditioning systems
are more massive due to the extreme derating required for the components
and are lower in efficiency resulting in heavier energy source component
masses.

To provide a high power, reliable power conditioning system, Rocketdyne
has provided a modular system in which a number of identical modules are
connected in parallel to achieve the total output power level. This
modularity provides improved reliability in that extra modules can be
provided without a significant increase in weight and robustness such that
a failure in a given module can be accommodated by a nominal increase in
power level on the other modules. :

This system with four (five) alternators will have a number of regulator
and rectifier stages operating in parallel to supply a common direct
current output bus. Each alternator will supply a group of these modules
and the alternators will not be required to operate in parallel. Thus,
synchronous operation of the alternators is not required. Figure
3.3.4-1 shows the electrical schematic.

The regulators can be SCRs in bridge arrangements operating in phase delay
mode to control the alternating current voltage or saturable reactors with
auxiliary windings connected to parasitic load resistors. The reactors
shown in Figure 3.3.4-1, present a more reliable alternative and are less
subject to voltage limitations. When saturated by the control current,
the reactors present relatively low impedance to the primary current flow.
This scheme provides the benefits of voltage regulation and a parasitic
load to dissipate system energy during a fault interruption event. The
reactors have a higher radiation resistance potential than the.SCRs and
the mass penalty of magnetic devices is minimized by designing the
alternators for the highest practical output frequency.

The rectification stages will consist of FETs operating in a synchronous
rectification mode. This type of operation provides a high efficiency,
especially in low voltage applications, but is dependent upon the
development of devices to operate at the required voltage levels. An
alternative would be stacked diodes in a ceramic insulating structure to
provide direct rectification. At the required output voltage, the forward
drop of the diode stack will be a small fraction of the total voltage and
the rectification efficiency will be high. An estimated drop of 50 volts
in the rectifier results in an efficiency of 99.5%.

Primary voltage control is accomplished by control of the alternator
fields. Fine control of the voltage will be provided by the saturable
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reactors and parasitic loads. The degree of voltage variation will be the
subject of a trade study to determine the minimum weight regulation system
consistent with user voltage tolerance requirements. The system using
alternators and saturable reactors is inherently stiff, that is, the source
impedance is low and variation in load current will result in relatively
low variations in output voltage. The regulation system will be designed
to provide the required degree of voltage regulation with system weight
generally being directly proportional to the level of control required.
The alternator is designed to provide output voltage in the range required
for conversion to the required DC voltage without step up transformation.

The voltage control will consist of a two loop control system with a slow,
wide range loop (the generator field) for control of large load variations
and a faster, narrow range loop (the saturable reactors) for fine control.
The characteristics of each control loop will be considered in the
development of the voltage control algorithms and the system will be
~designed to preclude instabilities due to the interaction of the two
control loops.

The power conditioning system configuration and mass are listed in Table
3.3.4-2., The design is modular and may be arranged to fit the space
available and to minimize shielding requirements. Therefore, only total
volume estimates are given in the charts.
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4.0 Technology and R&D Impacts

This section addresses the research issues requiring resolution to permit a
confident start on.full scale development, an assessment of the program technical
risks, the overall program schedules for development of the 10 MWe and 200 MWe
systems, the estimated costs of developing the two systems, and the impacts of
incorporating several very advanced technologies in the system.

At the completion of the development programs described here, the systems will
have been brought to a NASA technical readiness level of 8, "Flight Qualified
System."

4.1 Research Issues

Table 4.1-1 lists the research issues for the nuclear potassium Rankine cycle
system. The basis for this list is the technical risk assessment delineated in
Section 4.2. The Ultra High Power Space Nuclear System is largely based on
proven technology except for the reactor fuel, which is expected to require
substantial in-reactor testing to establish high burnup capability. The
remainder of the research issues are significant and require resolution, but are
not as critical as that mentioned above.

The research issues listed are the same for both the 10MWe and the 200MWe
systems, since the size of the system does not affect the fundamental data needed
for its design. Of course, the 200MWe system will require a more extensive
development and qualification program than the 10MWe system, after the research
issues have been satisfactorily resolved.
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4.2 Technical Risk Assessment

The research issues summarized in the previous section result from an
examination, component by component, of the current state~of-the-art, and
the data needed, if any, to permit a confident start on a half-scale
development program. This technical risk assessment is shown, largely in
tabular form, in this section. It is organized by the following major
subsystems:

Reactor

Primary Loop

Potassium Loop
Turboalternator

Heat Rejection System
Auxiliary Systems

Control and Instrumentation
Power Conditioning.

For each major component of each of the listed subsystems, there is a
brief narrative summary of the current state-of-the—art, a listing of the
NASA Technology Readiness Level, and a brief summary of the data needed
to bring the component to a point of readiness for full-scale development.
The NASA Technology Readiness Level scale is shown in Table 4.2-1.

None of the individual components exceeds a technology radiness level of
4 and most of them are 3 or less. This does not in itself require that
"research” be accomplished to permit start of a development program on the
component. The need for research is identified only where it is judged
that there is a significant lack of technical data available to support
the component design.
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Table 4.2-1. NASA Technology Readiness Levels

LEVEL 1 -BASIC PRINCIPLES OBSERVED AND, HEPORTEb-ﬁl |
L._.TECHNOLOGY

LEVEL2 CONCEPTUAL DESIGN FORMULATED

LEVEL 3 CONCEPTUAL DESIGN TESTED ANALYT!CALLY
OR EXPERIMENTALLY

LEVEL'. 4 CRITICAL FUNCTION/CHARACTER!STIC
' DEMONSTRAT!ON

!
!
1
{
)
]
|

DEVELOPMENT

LEVELS COMPONENE@RASSBOARDTESTEDlN-—-f-—-

RELEVANT ENVIRONMENT

"LEVEL 6 PROTOTYPE/ENGINEERING MODEL TESTED lN

RELEVANT ENVIRONMENT
LEVEL? ENGINEERING MODEL TESTED IN SPACE

!

|_ADVANCED .
T DEVELOPMENT

- LEVEL 8, “FLIGHT-QUALIFIED" SYSTEM

FLIGHT
SYSTEMS

LEVEL9 *“FLIGHT-PROVEN" SYSTEM—
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4.2.1 Reactor Technology Assessment

Table 4.2-2 summarizes the state of the art, technology readiness level,
and needed research for the reactor components. Because of their potential
for high burnup and capability to withstand rapid power transients, cermet
fuels have received development attention by the various national
laboratories. Feasibility of coating 100-um UN fuel particles with W-25Re
and densifying the cermet has been successfully demonstrated using TiN as
a surrogate for UN, and UN/W-25Re compatibility tests have been performed
at 1700 and 1900 K. Specimens of UN-W fuel were fabricated and irradiated
in the Battelle Research reactor in the mid-1960s. All testing performed
to date indicates that UN/W-25Re has high-temperature strength, high
thermal conductivity, good thermal shock resistance, high density, and high
burnup capability. However, very little data exists for the specific UN/W~
25Re cermet fuel planned. Some fabrication development has been performed,
but currently there are no irradiation data available. For these reasons,
a research program to establish fabrication techniques and to assess the
irradiation behavior of the cermet fuel at up to high burnups (capability
of fuel form is estimated to be on the order of 25%) is needed as a
precursor to full-scale reactor development.
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Table 4.2-2. Reactor Technology Assessment

Component . Technology
or Assembly State-of-the Art Readiness
Assessment Level Needed Research

Core and Fuel Neutronics and thermal 1 Cermet fuel fabri-
hydraulics calculational cation process de-
methods are well established velopment. Cermet
(No boiling in core.) Cermet fuel irradiation
fuel fabrication feasibility behavior at temp-
has been established but not erature to 25%
optimized. Applicable burnup.
irradiation data are minimal

Vessel and Coolant flow geometry is 3 None required.

internals

Fixed Reflector

Control Rod
Assemblies

NASA/CR—2001-210767

conventional. Vessel is
standard cylindrical shape
Core support by grid plates

is standard practice.

Thermal hydraulic calculations
are standard practice. ASTAR
811C material is available in
pilot plant quantities, and
has a substantial high-temp-
erature data base.

Neutronic calculations are 3 None required.
standard practice. Active

cooling is provided.

Materials are available.

Neutronic calculations are 2 None Required
standard practice. Actuator

design is conventional.

B4,C and T-111 materials are

available. Safety rods move

within dry wells. Bellows seals

or "canned" drives will be

required to contain liquid metal

for the active control rods.

98



4.2.2 Primary Loop Technology Assessment

Table 4.2-3 summarizes the state of the art, technology readiness level,
and needed research for the primary loop components. Since the primary
loop EM pumps operate at higher temperatures than current liquid metal EM
pumps, there is a lack of data on the long-term properties of the
structural, brazing, electrical, magnetic and insulating materials used
to fabricate the pump. Testing will be required to obtain these data.
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Table 4.2-3.

Component
or Assembly

(Sheet 1 of 2)

State~of-the Art
Assessment

Primary Loop Technology Assessment

Jet Pump

Decay heat
removal pump

Expansion
compensator

Piping

Primary loop
pump

NASA/CR—2001-210767

Water jet pumps are in
common use. Potassium jet
pump was operated for
18,000 h on MPRE program.

Thermoelectrically driven

dc conduction pumps were
developed on SNAP-10A
program. Total accumulated
operating time was 200,000 h.
Thermoelectric materials
previously used (SiGe) good
to 1300 K, which is adequate
with cooling on the pump.

Fifty expansion compensators
tested for over 10,000 h on
SNAP-10A program. ASTAR 811C
material is commercially
available in pilot plant
quantities. Bellows of this
size are in common use.

ASTAR 811C material for the
high temperature piping is
available in pilot plant
quantities. 7500 h test
loop with ASTAR 811C samples
showed no corrosion or
carbon depletion.

ASTAR 811C for the pump

throat is available in pilot
plant quantities. A helical
induction pump successfully
pumped 1534 K lithium for
10,000 h. Long-term behavior
of structural, brazing, elec-
trical, magnetic, and insulat-
ing materials require charac-
terization.

100

Technology
Readiness
Level Needed Research
4 None required.
4 None required.
4 None required.
4 None required.
2 Long-term property

data on structural,
brazing, electrical,
magnet, and insul-
ating materials



Table 4.2-3. Pfimary Loop Technology Assessment
(Sheet 2 of 2)

Component Technology
or Assembly State-of-the Art Readiness

Assessment Level Needed Research
Oxygen control Need for getters will 2 None required.

eventually be developed
as part of materials
base technology.

Gas removal SP-10Q0 gas removal 3 None required.
system will be employed.

Trace heating Electrical resistance 4 None required.
heaters commonly used on
liquid metal piping.
Materials must be selected
for the high temperature.

Insulation Multifoil insulation used 4 None required.
on Kilowatt Isotope Power
System (KIPS), Brayton
Isotope Power System (BIPS),
and other space programs.

Armor C-C composite material can 2 None required.

be fabricated in required
shapes.
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4.2.3 Potassium Loop Technology Assessment

Table 4.2-4 summarizes the state of the art technology readiness level,
and needed research.

Considerable research and development has been accomplished to establish
the practicality of boiling potassium components. In the Medium—-Power
reactor Experiment, ORNL demonstrated successful operation of various
components and subsystems, at a turbine inlet temperature of 1150 K. Data
were obtained on the heat transfer and burnout limitations for boiling
potassium, and good boiling-flow stability and flow distribution were
demonstrated in electrically heated core mock-ups. Nucleation rings were
developed to provide a satisfactory method of initiating and maintaining
smooth nucleate boiling of potassium. A tapered tube direct-condensing
radiator was developed and shown to provide uniform flow distribution with
good flow stability. Performance of typical jet pumps in the cavitating
regime was established and the pump characteristics for zero—-g operation
of a Rankine cycle were demonstrated.

In the SNAP-50 boiling potassium program, boiling potassium components,
including a boiler, were tested for a total of approximately 16,000 h.

An issue that has received a great deal of attention in two—phase systems
is that of management of the condensing fluid. Techniques for
accomplishing this have been developed in support of the Space Station
Freedom Electric Power System and the Dynamic Isotope Power System. both
these applications considered the use of an organic—-Rankine cycle for
power conversion. Sundstrand Corporation developed and tested a rotary
fluid management device that generates an artificial gravity for fluid-
vapor separation. This device is used in conjunction with a shear flow
condenser to predictably separate vapor and fluid. Operation has been
convincingly demonstrated in short duration KC-135 zero—-g tests.
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Table 4.2-4. Potassium Loop Technology Assessment

Component
or Assembly

(Sheet 1 of 2)

'Technology
State~of-the Art Readiness
Assessment Level Needed Research

Boiler/reheater

Boiler feed
turbopump

Rotary fluid
management
device (RFMD)

Stop valve

Start valve

NASA/CR—2001-210767

ASTAR 811C material is 4 None required.
available in pilot plant

quantities. See primary

loop piping for past ASTAR

811C testing. Feasibility

of lithium—heated boiler

for vaporizing potassium

demonstrated in ORNL and

NASA experiments, which

operated at potassium exit

temperatures of 1450 K.

Droplet carryover in super-

heated vapor has been noted.

Potassium turbopump has been 4 ~  None required.
tested at 1100 to 1150 K for

2,500 h. ASTAR 811C material

is available in pilot plant

quantities. Nb-1Zr is com-

mercially available.

Small-scale RFMDs tested on 4 None required.

‘Space Station Freedom

program, and boost surveil-
lance and tracking satellite
(BSTS) program using organic
working fluid. KC-135 zero-g
tests have been successful.
Nb-1Zr is commercially avail-
able. Experience with
potassium working fluid in an
RFMD will be obtained during
component development program.

Valve is conventional design. 3 None required.
Nb-1Zr material is commer-

cially available. Reliability

at operating temperature must

be established during develop-

ment program.

Same as stop valve. 3 None required.
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Potassium Loop Technology Assessment
(Sheet 2 of 2)

Technology
Component State-of—-the Art Readiness

or Assembly Assessment ) Level Needed Research

Control valve Same as stop valve, except 3 None required.
valve is ASTAR 811C, which
is commercially available
in pilot plant quantities.

Accumulator Similar, but much smaller 4 None required.
accumulators used on SNAP
program. Nb-1Zr material
commercially available.
Bellows commonly made in
required sizes.

Bearing supply Conventional heat exchanger 3 None required.
cooler design. Nb—-1Zr material
commercially available.

Bearing supply Same as bearing supply cooler. 3 None regquired.
recuperator '

Piping ASTAR 811C material has been 4 None required.
tested (see primary piping)
and is available in pilot plant
quantities. Nb-1Zr material is
commercially available.

Trace heating Electrical resistance heaters 4 None required.
used on liquid metal piping.
Materials must be selected for
high temperature.

Insulation Multifoil insulation used on 4 None required.
Kilowatt Isotope Power System ’
(KIPS), and other space programs.

Armor C-C composite material can be 2 None required.
fabricated in required shapes.
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4.2.4 Turboalternator Technology Assessment

Table 4.2-5 summarizes the state of the art, technology readiness level,
and needed research for the turboalternator components.

Extensive potassium turbine experience exists. Past potassium turbines
have been designed for temperatures as high as 1450 K. Turbine
materials have been demonstrated in T-111 potassium loops; however,
dynamic testing has been performed only at temperatures in the 1100 K
range to study potential blade erosion in the wet region of the turbine.
ASTAR 1511-C material properties have been measured and are adequate for
its use in the turbine blades and rotor.

Both two-stage and three—-stage potassium reaction turbines have been
tested, specifially to determine the extent of turbine erosion in the
final stages. The two-stage turbine operated for 5,100 h with
negligible erosion, and the three-stage turbine for 5,000 h with a
similar result.

Tilting pad bearings, planned for the turboalternator, are extensively

used. Potassium lubricated bearings have been successfully tested in
bearing test rigs for a total of approximately 9,000 h.
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Table 4.2-5. Turboalternator Technology Assessment

Component Technology
or Assembly State-of-the Art Readiness

- Assessment Level Needed Research
Turbine ASTAR 1511C material for 4 None required.

the disc and blades was
produced in the early 1970s
in small quantities.
Technology for forging
fabrication must be reestab-
lished. ASTAR 811C material
is commercially

available in
pilot plant quantities..
Potassium turbine (final
stages) tests have been
successfully performed,
showing acceptable erosion
of blades. Recent water
tests show that removal
of moisture collection on
final stator may be
required. Tests have
demonstrated methods to
remove moisture. Erosion
not a problem in tests.

Turbine and Tilting pad bearings are in 4 None required.
alternator common use and have a large

bearings and data base. Short-—term tests

seals of potassium bearings in the

proper temperature range
have been successful.

Alternator Lower temperature wound-field 3 None required.
synchronous type design has
a long application history.
Materials of construction are
readily available and well
characterized. New design
employs stainless steel bore
seal.
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4,2.5 Heat Rejection System Technology Assessment

Table 4.2-6 summarizes the state of the art, technology readiness level,
and needed research for the main condenser and the five radiators that
constitute the heat rejection system.

Adequate data are available for the shear flow condenser hydraulic design.
The state of the art of the five radiators is similar. The analytical
tools for the heat pipe designs are available and have been proven in
practice. All of the heat pipes are made of carbon—carbon composite
material with a protective coating. It may be possible to select a single
protective coating suitable for all working fluids (potassium, water, and
ethanol), but in any event, testing will be necessary to select an
appropriate coating and to establish techniques for its application.
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Table 4.2-6.

Component
or Assembly

State-of—the Art
Assessment

Technology
Readiness
Level

Heat Rejection System Technolegy Assessment

Needed Research

Condenser

Main Radiator

Alternator
Cooling
Radiator

Auxiliary
System
Radiator

Rectifer

Cooling
Radiator

NASA/CR—2001-210767

Design methods for shear
flow condenser have been
validated on Organic
Rankine Cycle program.
KC-135 tests have
verified performance in
zero—-g. Operation with
potassium will be
verified in development
program. Limited data
are available on
properties of C-C
composite materials.
Fabrication of various
shapes has been
demonstrated.  Nb-1Zr
material for the liner is
commercially available,

Heat pipe operation in
zero—g has been
demonstrated generically.
See comments for
condenser regarding C-C
composite material.

Same as main radiator,
except that C-C composite
is carbon sealed rather
than nickel coated --
must be compatible with
water.

Same as main radiator.

Same as alternator
cooling radiator, except
that C-C composite seal
must be compatible with
ethanol.

108

Fabrication of C-C
composite shapes.
Insertion of Nb-
1Zr liner and
joining of lined
C-C composite to
Nb-1Zr piping.

Fabrication

of niobium or
nickel coated CCC
heat pipes.

Fabrication of C-C
composite shapes
and sealing with
dense carbon.
Compatability with
water.

Same as main
cooling radiator.

Same as alternator
cooling radiator.
Compatibility with
ethanol.



4.2.6 Auxiliary Systems Technology Assessment

Table 4.2-7 summarizes the state of the art, technology readiness level,
and needed research for the components of the auxiliary systems.
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Table 4.2-7. Auxiliary Systems Technology Assessment

Component Technology
or Assembly State-of-the Art Readiness

Assessment Level Needed Research
Thermoelectric— Smaller but similar 3 None required.
magnetic pump pump used on SNAP-10A.

Nb-1Zr material
commercially available.

Expansion Similar design used on 3 None required.
compensator SNAP-10A expansion

compensator.
Piping - Nb-1Zr material is 3 None required.

commercially available.

Trace heating Electrical resistance 4 None required.
' heaters commonly used on
liquid metal piping.

Insulation Multifoil insulation used 4 None required.

in- KIPS, BIPS, and other
space programs
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4.2.7 Control and Instrumentation Technology Assessment

Table 4.2-8 summarizes the state of the art, technology readiness level,
and needed research for the various classes of control and instrumentation.

Some moderate extension of the current state of the art with respect to
temperature capability of the electronics will be necessary, however, this

is not regarded as a technology issue. Improvements in this characteristic
are expected as part of the normal development of these devices.
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Table 4.2-8 Control and Instrumentation Technology Assessment

Component
or Assembly

(Sheet 1 of 2)

State—of~the Art
Assessment

Technology
Readiness
Level

Needed Research

Electronics
(computers,
signal,
conditioning
equipment,
etc.)

Flow sensors

Temperature
sensors

Pressure
sensors

Speed sensors

Flux sensors

Control rod
and safety
rod position
indicators
(step
counting
devices)

NASA/CR—2001-210767

Commercially available
for 343 to 398 K.

Electromagnetic flow
meters are in wide use.
Will require high-
temperature windings.

High-temperature therm-—
couples (e.g., W-Re) are
available for
temperatures up to 1350
K. For higher
temperatures (e.g., 1550
K), there are currently
no tested devices.

Bellows or diaphragm seal
assemblies with liquid
metal transmission are in
wide use.

Required for tufbopump
only. Will require high-
temperature windings.

High—temperature flux
sensors will be available
for 873 K in the short
term. Will use in cooler
location.

Fixed position switches

to be used will utilize— -

technology developed on
SNAP 8 and 10.

112
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None required.

None required.

Design and testing
of temperature
sensors capable of
operation at
1550K.

None required.

None required.

None required.

None required.



4.2-8.

Component
or Assembly

State~of-the Art
Assessment

Control and Instrumentation Assessment
(Sheet 2 of 2)

Valve
actuators

Software

NASA/CR—2001-210767

Solenoid or motor-driven
actuators are in wide
use. Will require high-
temperature windings.

Standard software

approaches are available
(e.g., ADA).

113

Technology

Readiness

Level Needed Research
3 None required.
4 None required.



4.2.9 Power Conditioning System Technology Assessment

Table 4.2-9 summarizes the state of the art, needed reséarch, and fallback
positions for the components of the power conditioning system.
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Table 4.2-9. Power Conditioning System Technology Assessment

Component
or Assembly

State-of-the Art
Assessment

Technology
Readiness
Level

Needed Research

Rectifier

Cable

NASA/CR—2001-210767

Diode characteristics known,
thermal calculation tech-
niques standard in industry.

Change in design to flat
aluminum plate (cable)
allows adequate radiation
heat loss to provide oper-
ation at moderate temper-

atures.
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None required.

None required.



4.3 . Development Schedule

4.3.1 System Development

Overall development schedules for the 10MWe and 200MWe systems are shown
in Figures 4.3-1 through 4.3-4. The first two schedules are for a
"crash" program (like the Apollo program), and the last two schedules
are for a more typical program in which the rate of progress is a
compromise between speed and availability of funding. In the "crash"
schedule, program phases overlap.

The logic of all schedules is basically the same. The program starts
with a system definition phase in which a preconceptual design is
prepared primarily to assure that all research and development issues
have been identified and characterized. A major output of this phase is
a detailed plan for resolution of all feasibility issues.

In the next phase of the program, the conceptual design of the system is
prepared and more importantly, sufficient research is performed to
resolve the technical feasibility issues. This phase is essentially the
same for both the 10MWe and the 200MWe systems.

Full-scale development constitutes the next phase of the program. In
this phase, each major system component is subjected to testing on the
ground, in an environment approximating the ultimate operating
environment, to verify performance. Design changes are made as
necessary to achieve the desired component characteristics. Subsystem
testing includes a reactor and primary loop ground test, and a separate
(non-radioactive) test of a single power conversion loop.

As- an option, a subscale flight test system can be designed, fabricated,
launched, and tested in space. Design of this flight test system can
start several years into the full scale development phase, and it could
be launched several years before the "full-up" system. Size of the
subscale components would be determined based on scalability
considerations, and the amount of redundancy (i.e., number of power
conversion loops) could be minimized to keep costs down.

Successful completion of the full-scale development program leads.to the
next phase, in which all system components are flight qualified, and the
flight system is fabricated.

In the final phase, the flight system is launched, assembled in space,
and tested to assure that it meets all performance requirements.
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4.3.2 Test Facility Design and Construction

The major test facilities required for the development program are a
reactor ground test facility and a nonnuclear subsystem test facility.
For the. 10 MWe system, these facilities can be designed and readied for
operation at an estimated 4 years after program start at the very earliest.
For the 200 MWe system, 5 years is a more likely estimate. These elapsed
times support the "crash" program schedules for the two systems. For the
"normal" program schedules, additional time would be utilized, both to
allow time at the front end to establish firm requirements and during
construction to minimize overtime. For this scenario, the major facilities
for the 10 MWe system would be available in an estimated 6 years after
program start and for the 200 MWe system, 7 years after program start.
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4.4 Cost Estimate

Rough Order of Magnitude (ROM) costs have been estimated for the 10 MWe
and 200 MWe system programs and are shown in Tables 4.4-1 through 4.4-4.

The cost estimates for the development costs include all necessary
development tests, such as lithium thaw, power conversion -system
performance tests, radiator heat pipe development tests, reactor in-pile
testing, etc. Also included are test facilities and test article costs.
Finally, the development phase culminates with a ground demonstration test.
Cost for the ground demonstration test facilities, test unit, and for the
ground demonstration test are included. Total development costs come to
1.2 billion for the 10 MWe system, and 2.8 billion for the 200 MWe system.

Costs for the flight system design and qualification phase were developed
on the basis of equipment similarity to other recent program cost
estimates. These costs include costs for flight system design, component
fabrication and qualification, systems mockup fabrication and gqualifica-
tion, and flight system fabrication and qualification. Qualification costs
contain costs for test facilities, test article fabrication and acceptance,
and qualification testing. Fabrication costs comprise costs for
facilities, flight system components, and flight system assembly and
acceptance. Systems mockup qualifications comprise thermal hydraulic
qualification tests, structural qualification, and electromagnetic

compatibility qualification. Total qualification costs come to
$1.1 billion for the 10 MWe system, and $3.3 billion for the 200 MWe
system.

The total ROM costs shown are for a "normal" program in which there is no
significant overlap of program phases and for which the annual funding is
sufficient to avoid delays or temporary cutbacks in effort. For a "crash"
program, there would be a cost savings associated with "level-of-effort"
activities such as program management, cost control and reporting, data
management, etc. These costs typically run about 15X% of the total program
and tend to continue for the duration of the program. Shortening the
duration decreases the costs. Countering these savings is the very real
potential for cost increases due to overlap of program phases, coupled with
requirement modifications or design changes initiated by the user. These
changes, which occur frequently in complex programs, have a higher cost
impact the faster the design and fabrication activities are moving.

For these reasons, only one set of costs has been estimated, and at the

present state of system design and program planning, may be applied to
either the "crash" schedule or the "normal" schedule.
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4.5 Advanced Technology Impact

As discussed in section 3.1.3, incorporation of certain advanced
- technologies in the design would be expected to improve system performance
(i.e., decrease weight while retaining required electrical output).
Counterbalancing these performance improvements is the additional time and
expense required to develop the technology to the point where it can be
utilized in the system with confidence.

The 'system mass savings and associated development time penalties for 1)
advanced radiators, 2) carbon-carbon composites and piping, and 3) ceramic
turbine materials have been roughly estimated and are tabulated in Table
4,5-1. If all three advanced technologies were incorporated, the total
system mass savings would be additive, or about 6,480 kg for the 10 MWe
system and 78,800 kg for the 200 MWe system. The schedule impact would
be 5-7 years, since the additional radiator development time would envelop
that for the turbine and the carbon-carbon components and piping.
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